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Graphs

» A graph is a pair of sets G = (V, E)
» V is called the set of vertices.

» E is called the set of edges. The elements from E are some
pairs of vertices.



Hummingbird Graph
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two of them.

» The clique number of a graph is the size of a largest clique. It
is denoted by w(G).



Cliques and clique number

> A subset of vertices is a clique if there is an edge between any
two of them.

» The clique number of a graph is the size of a largest clique. It
is denoted by w(G).



Cliques and clique number

> A subset of vertices is a clique if there is an edge between any
two of them.

» The clique number of a graph is the size of a largest clique. It
is denoted by w(G).

» How are |E| and w(G) related?



Cliques and clique number

> A subset of vertices is a clique if there is an edge between any
two of them.

» The clique number of a graph is the size of a largest clique. It
is denoted by w(G).

» How are |E| and w(G) related?
> Intuition: If |V| is fixed and |E]| is large, then w(G) is large.



Mantel's theorem and Turan’'s theorem

Theorem (Mantel, 1907)
Let G = (V,E) be a graph such that |V(G)| = n. If
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Theorem (Mantel, 1907)
Let G = (V,E) be a graph such that |V(G)| = n. If
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w(G) > 3.

then

Theorem (Turan, 1941)

Let G = (V,E) be a graph such that |V(G)| = n and r a positive
integer. If

r—1 n?

E(G
E©) > =7

then
w(G)>r+1.



(Fractional) Turan's theorem

> A graph G on n vertices has at most

nNn2
2) 7 2

edges.



(Fractional) Turan's theorem

> A graph G on n vertices has at most
n\ n?
2) 7 2

» Intuition: A large proportion of the maximum possible edges
yields a large clique of fixed size with respect to n.

edges.



(Fractional) Turan's theorem

v

A graph G on n vertices has at most
n\ n?
2) 7 2

Intuition: A large proportion of the maximum possible edges
yields a large clique of fixed size with respect to n.

edges.

Question: Does there exist a result that given a large
proportion of edges guarantees that w(G) > cn?

Question: Does there exist a result that given a large
proportion of edges guarantees that w(G) > f(n), with f a
function such that f(n) — co?



Interval graphs

> In general, they do not exist. Turdn’s theorem is best possible.
Therefore, there are graphs such that

2
]E(G)|>O.9999-% and  w(G) < 0.0001 - 1.



Interval graphs

> In general, they do not exist. Turdn’s theorem is best possible.
Therefore, there are graphs such that

2
]E(G)|>O.9999-% and  w(G) < 0.0001 - 1.

» The best we can get is a Kigo01-



Interval graphs

> In general, they do not exist. Turdn’s theorem is best possible.
Therefore, there are graphs such that
n2
|E(G)| > 0.9999 - 5 and  w(G) < 0.0001 - n.

» The best we can get is a Kigo01-

» What happens if we restrict ourselves to some families of
graphs?



Interval graphs

> In general, they do not exist. Turdn’s theorem is best possible.
Therefore, there are graphs such that

2
|E(G)| > 0.9999 - % and  w(G) < 0.0001 - 1.
» The best we can get is a Kigo01-

» What happens if we restrict ourselves to some families of
graphs?

» Interval graphs: G = (V, E), where V is a finite family of
bounded real intervals and two intervals form an edge if they
intersect.

» We will use G, to denote the family of all interval graphs.



Example of an interval graph

12 3 3 4 25451



Another example of an interval graph

Figure: By David Eppstein, Public Domain



A theorem by Katchalski and Liu

Theorem (Katchalski, Liu, 1979)

Let G € G; be an interval graph on n vertices and o € (0,1) a real
number. If G has more than
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edges, then w(G) > § - n.



A theorem by Katchalski and Liu

Theorem (Katchalski, Liu, 1979)

Let G € G; be an interval graph on n vertices and o € (0,1) a real
number. If G has more than
n
“ 2

> If we have half of the edges, Turdn's theorem states that
w(G) > 3, but K.L. theorem states that w(G) > 7.

» Why can we have a better Turan's type result?
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A theorem by Katchalski and Liu

Theorem (Katchalski, Liu, 1979)

Let G € G; be an interval graph on n vertices and o € (0,1) a real
number. If G has more than

- (2)

> If we have half of the edges, Turdn's theorem states that
w(G) > 3, but K.L. theorem states that w(G) > 7.

» Why can we have a better Turdn's type result? In this case, it
is because of the geometry.

edges, then w(G) > 5 - n
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Questions

» What is the translation of the involved geometry in
combinatorial terms?

» Can we isolate this property so that we can have a purely
combinatorial theorem?

> In which families can we have a Turdn’s type result that
guarantees w(G) > ¢ - n?

> In which families can we have a Turdn’s type result that
guarantees w(G) > f(n) where f(n) — co?

» Can we find some nice applications in geometry or other areas
of mathematics?
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Colorings and chromatic number

v

For a positive integer ¢ we use [c]| to denote {1,2,...,c}.

A proper c—coloring of G is a function f : V — [c] such that
for adjacent vertices v; and v, we have that f(v1) # f(v2)

v

v

The chromatic number x(G) is the minimum ¢ for which a
proper c—coloring for G exists.

A graph G is bipartite if x(G) < 2.

v



Hummingbird Graph



Proper coloring of the Hummingbird Graph
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Cliques, colorings and vertices

» How are w(G) and x(G) related?

» The vertices of a clique need distinct colors. Therefore
x(G) = w(G).

> Is it possible to upper-bound x(G) by a function depending
only on w(G)?

Theorem (Descartes, Erdos, Mycielski, Zykov, AMM, etc.)

There are graphs such that w(G) < 2 and such that x(G) is
arbitrarily large.

» Families in which x(G’) < f(w(G")) for any induced subgraph
G’ of a graph G in the family are interesting and have been
widely studied (Gyarfas, 1987). For example, perfect graphs.
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And, if we can use the number of vertices?

» We can upper-bound x(G) using a function of w(G) and
|[V(G)|, for example x(G) < |V(G)|.
» How much do we need |V(G)|?

Proposition
For any graph G, the following inequality holds:

X(6) < 5+ IV(G)] + 5 -w(6).
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Proof

» Let G be a graph, n=V(G), x = x(G) and w = w(G). We
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Proof

v

Let G be a graph, n = V(G), x = x(G) and w = w(G). We
color G using x colors.

v

Let a; be the number of chromatic classes with /i vertices.
We note that a; + a2 + ...+ a, = x and that

v

n=a +2a+3a3+...+ra,
>a+2a@a+a+...+a)
=a1+2(x—a1) =2x — a1.

Therefore x < 421 We now need to prove a; < w.

v
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The results: Some equivalences

Theorem (L.M. and L. Montejano, 2014)

Let & be a family of graphs that is closed under induced
subgraphs. Then the following three statements are equivalent:

> There are real numbers c and d such that
» for every graph G € & we have x(G) < cw(G) and
» for every B € &, B bipartite, we have |E(B)| < d|V(B)|.
> & has a linear fractional Turdn-type theorem, namely, there
exists 8 such that
> for G € & if |[E(G)| > o)), then w(G) > apn.
> There exists a constant C such that

» If G is a graph on n vertices such that w(G) < k, then
|E(G)| < Cnk.



The results: Chromatic number bound

Theorem (L.M. and L. Montejano, 2014)

For any € > 0 there exists a function f. such that for any graph G
the following inequality holds:

X(G) < e |V(G)] + f(w(G))-



The results: Chromatic number bound

Theorem (L.M. and L. Montejano, 2014)

For any € > 0 there exists a function f. such that for any graph G
the following inequality holds:

X(G) < e |V(G)] + f(w(G))-

Theorem (L.M. and L. Montejano, 2014)

Let & be a cuis family of graphs in which |E(B)| < d|V/(B)| for a
global constant d.

Then for any o > 0, the graphs in the set

{Ged&: |E(G) > oz('v )} satisfy that w(G) — oo as

V(6)] - .



Some problems

> Is it true that for any graph G we have the following?

(G) < % V(G)| + 1000 - w(G).

> Is is true if we change 1000 by a larger constant?
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Thank you for your attention!
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