
Fractional Turán’s theorem and bounds for the
chromatic number

Leonardo Ignacio Mart́ınez Sandoval
Luis Montejano Peimbert

IMATE - Unidad Juriquilla, UNAM
I3M - Université de Montpellier

LAGOS 2015, May 14



Graphs

I A graph is a pair of sets G = (V ,E )

I V is called the set of vertices.

I E is called the set of edges. The elements from E are some
pairs of vertices.



Hummingbird Graph



Cliques and clique number

I A subset of vertices is a clique if there is an edge between any
two of them.

I The clique number of a graph is the size of a largest clique. It
is denoted by ω(G ).

I How are |E | and ω(G ) related?

I Intuition: If |V | is fixed and |E | is large, then ω(G ) is large.
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Mantel’s theorem and Turán’s theorem

Theorem (Mantel, 1907)

Let G = (V ,E ) be a graph such that |V (G )| = n. If

|E (G )| >
⌊n

2

⌋
·
⌈n

2

⌉
,

then
ω(G ) ≥ 3.

Theorem (Turán, 1941)

Let G = (V ,E ) be a graph such that |V (G )| = n and r a positive
integer. If

|E (G )| > r − 1

r
· n

2

2
,

then
ω(G ) ≥ r + 1.
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(Fractional) Turan’s theorem

I A graph G on n vertices has at most(
n

2

)
≈ n2

2

edges.

I Intuition: A large proportion of the maximum possible edges
yields a large clique of fixed size with respect to n.

I Question: Does there exist a result that given a large
proportion of edges guarantees that ω(G ) ≥ cn?

I Question: Does there exist a result that given a large
proportion of edges guarantees that ω(G ) ≥ f (n), with f a
function such that f (n)→∞?
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Interval graphs

I In general, they do not exist. Turán’s theorem is best possible.
Therefore, there are graphs such that

|E (G )| > 0.9999 · n
2

2
and ω(G ) < 0.0001 · n.

I The best we can get is a K10001.

I What happens if we restrict ourselves to some families of
graphs?

I Interval graphs: G = (V ,E ), where V is a finite family of
bounded real intervals and two intervals form an edge if they
intersect.

I We will use GI to denote the family of all interval graphs.
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Example of an interval graph



Another example of an interval graph

Figure: By David Eppstein, Public Domain



A theorem by Katchalski and Liu

Theorem (Katchalski, Liu, 1979)

Let G ∈ GI be an interval graph on n vertices and α ∈ (0, 1) a real
number. If G has more than

α ·
(
n

2

)
edges, then ω(G ) ≥ α

2 · n.

I If we have half of the edges, Turán’s theorem states that
ω(G ) ≥ 3, but K.L. theorem states that ω(G ) ≥ n

4 .

I Why can we have a better Turán’s type result? In this case, it
is because of the geometry.
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Questions

I What is the translation of the involved geometry in
combinatorial terms?

I Can we isolate this property so that we can have a purely
combinatorial theorem?

I In which families can we have a Turán’s type result that
guarantees ω(G ) ≥ c · n?

I In which families can we have a Turán’s type result that
guarantees ω(G ) ≥ f (n) where f (n)→∞?

I Can we find some nice applications in geometry or other areas
of mathematics?
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Colorings and chromatic number

I For a positive integer c we use [c] to denote {1, 2, . . . , c}.

I A proper c−coloring of G is a function f : V → [c] such that
for adjacent vertices v1 and v2 we have that f (v1) 6= f (v2)

I The chromatic number χ(G ) is the minimum c for which a
proper c−coloring for G exists.

I A graph G is bipartite if χ(G ) ≤ 2.
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Proper coloring of the Hummingbird Graph



Cliques, colorings and vertices

I How are ω(G ) and χ(G ) related?

I The vertices of a clique need distinct colors. Therefore
χ(G ) ≥ ω(G ).

I Is it possible to upper-bound χ(G ) by a function depending
only on ω(G )?

Theorem (Descartes, Erdos, Mycielski, Zykov, AMM, etc.)

There are graphs such that ω(G ) ≤ 2 and such that χ(G ) is
arbitrarily large.

I Families in which χ(G ′) ≤ f (ω(G ′)) for any induced subgraph
G ′ of a graph G in the family are interesting and have been
widely studied (Gyarfas, 1987). For example, perfect graphs.
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And, if we can use the number of vertices?

I We can upper-bound χ(G ) using a function of ω(G ) and
|V (G )|

, for example χ(G ) ≤ |V (G )|.
I How much do we need |V (G )|?

Proposition

For any graph G, the following inequality holds:

χ(G ) ≤ 1

2
· |V (G )|+ 1

2
· ω(G ).
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Proof

I Let G be a graph, n = V (G ), χ = χ(G ) and ω = ω(G ). We
color G using χ colors.

I Let ai be the number of chromatic classes with i vertices.

I We note that a1 + a2 + . . .+ ar = χ and that

n = a1 + 2a2 + 3a3 + . . .+ rar

≥ a1 + 2(a2 + a3 + . . .+ ar )

= a1 + 2(χ− a1) = 2χ− a1.

I Therefore χ ≤ n+a1
2 . We now need to prove a1 ≤ ω.
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The results: Some equivalences

Theorem (L.M. and L. Montejano, 2014)

Let G be a family of graphs that is closed under induced
subgraphs. Then the following three statements are equivalent:

I There are real numbers c and d such that
I for every graph G ∈ G we have χ(G ) ≤ cω(G ) and
I for every B ∈ G, B bipartite, we have |E (B)| ≤ d |V (B)|.

I G has a linear fractional Turán-type theorem, namely, there
exists β such that

I for G ∈ G if |E (G )| ≥ α
(|V (G)|

2

)
, then ω(G ) ≥ αβn.

I There exists a constant C such that
I If G is a graph on n vertices such that ω(G ) ≤ k, then
|E (G )| ≤ Cnk.



The results: Chromatic number bound

Theorem (L.M. and L. Montejano, 2014)

For any ε > 0 there exists a function fε such that for any graph G
the following inequality holds:

χ(G ) ≤ ε · |V (G )|+ fε(ω(G )).

Theorem (L.M. and L. Montejano, 2014)

Let G be a cuis family of graphs in which |E (B)| ≤ d |V (B)| for a
global constant d.
Then for any α > 0, the graphs in the set
{G ∈ G : |E (G )| ≥ α

(|V (G)|
2

)
} satisfy that ω(G )→∞ as

|V (G )| → ∞.
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Some problems

I Is it true that for any graph G we have the following?

χ(G ) ≤ 1

3
· |V (G )|+ 1000 · ω(G ).

I Is is true if we change 1000 by a larger constant?
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