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Hall’s theorem

Let F = {S1, . . . ,Sm} be a family of finite subsets of a common
ground set E . A system of distinct representatives is an
m−element subset {x1, x2, . . . , xm} of E such that xi ∈ Si for all
1 ≤ i ≤ m.

Theorem (Hall’s theorem, 1935)

The family F has a system of distinct representatives if and only if
for every subset I ⊂ {1, 2, . . . ,m} we have∣∣∣∣∣⋃

i∈I
Si

∣∣∣∣∣ ≥ |I |.
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Hall-type theorems

Let F = {S1, . . . ,Sm} be a family of subsets on a common ground
set E . A system of representatives is an m−element subset
{x1, x2, . . . , xm} of E with the property such that xi ∈ Si for
all 1 ≤ i ≤ m.
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The family F has a system of representatives if (and only if)
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≥ f (|I |).

Here α is an integer valued function related to the conclusion we
want to obtain.
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Hall-type theorem for hypergraphs

Let F = {H1, . . . ,Hm} be a family of hypergraphs on a common
vertex set V . A system of disjoint representatives is an m−element
subset {E1,E2, . . . ,Em} of pariwise disjoint edges such that
Ei ∈ Hi for all 1 ≤ i ≤ m.

Theorem (Aharoni-Haxel, 2000)

The family F has a system of disjoint representatives if for every
subset I ⊂ {1, 2, . . . ,m} there exists a matching MI in ∪i∈IHi

which needs at least |I | disjoint edges from ∪i∈IHi to be pinned.

The proof introduced topological techniques to the area.
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General position in Rd

Three definitions

I A set X of points in Rd is in general position if every subset
of at most d + 1 points is affinely independent.

I For a set X of points in Rd let ϕ(X ) denote the maximal size
of a subset of X in general position.

I Let F = {X1, . . . ,Xm} be a family of finite sets in Rd . A
system of general position representatives is a m−element
subset {x1, x2, . . . , xm} in general position such that xi ∈ Xi

for all 1 ≤ i ≤ m.
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Hall-type theorem for general position

Theorem (A. Holmsen, L.M-S., L. Montejano, 2015)

For every integer d ≥ 1 there exists a function fd : N→ N with
fd(k) in O(kd) such that the following holds.
Let F = {X1 . . . ,Xm} be a family of finite sets in Rd . If

ϕ

(⋃
i∈I

Xi

)
≥ fd(|I |)

for every non-empty subset I ⊂ {1, 2, . . . ,m}, then F has a system
of general position representatives.



Sketch of the proof

We study a simplicial complex K

Vertices of K : ∪ F

Faces of K : Sets in general position

We call K the general position complex.⋃
i∈I Xi −→ Induced sub complex of K

System of g.p.r. ←− Colorful simplex
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Sketch of the proof

I A theorem by Kalai and Meshulam (2005) gives a Hall-type
criterion to find colorful simplices in terms of connectivity.

I K can be regarded as a completion of the affine independence
complex L. This allows us to understand K locally.

I In particular, we can understand the connectivity of K by
verifying a local condition on L. The following lemma can be
deduced from Björner’s version of the Nerve Theorem (2003).

Lemma (A. Holmsen, L.M-S., L. Montejano)

Let L be a simplicial complex of dimension d and let k be a
non-negative integer. If L is (2k + 2)-star, then its d-completion
∆d(K ) is k-connected.
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Geometric Hall-type theorems

I Therefore, for any I ⊂ {1, 2, . . . ,m} and k = |I | − 2, if LI is
the subcomplex of L induced by ∪i∈IXi we have:

Hypothesis → LI is (2k + 2)-star → ∆d(LI ) is k-connected

I This, combined with Kalai and Meshulam result, implies the
desired conclusion.

Remark: Using an easier pidgeon-hole argument we can get a
function fd(k) in O(kd+1). The topological technique allows us to
get a function in O(kd). In some sense this is asymptotically
correct.
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A lower bound

For k and d positive integers we define

Cd(k) =

{
k if k ≤ d + 1(k−1

d

)
if k ≥ d + 2.

Proposition

Let d be a positive integer. Let m be an integer m ≥ d + 2. There
exists an example of a family F = {X1, . . . ,Xm} of finite sets in Rd

without a system of general position representatives and for which

ϕ

(⋃
i∈I

Xi

)
≥ Cd(|I |)

for every non-empty subset I ⊆ {1, 2, . . . ,m}.



Open problems

Computation

I How can we compute a system of general position
representatives? What can we say about the efficiency of the
algorithm?

Fast verification

I There exist fast probabilistic algorithms to determine whether
a bipartite graph has a matching. Do they also exist for
systems of general position representatives?

Increasing ϕ in first values

I Does ϕ(UI ) ≥ 30|I | gives a system of general position
representatives?

Further work

I Which other geometric properties have a Hall-type theorem?
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Thank you!

Thank you for your attention!


